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ABSTRACT
Logical reasoning over Knowledge Graphs (KGs) for first-order logic
(FOL) queries performs the query inference over KGs with logical
operators, including conjunction (∧), disjunction (∨), existential
quantification (∃) and negation (¬), to approximate true answers
in embedding spaces. However, most existing work imposes strong
distributional assumptions (e.g., Beta distribution) to represent en-
tities and queries into presumed distributional shape, which limits
their expressive power. Moreover, query embeddings are challeng-
ing due to the relational complexities in multi-relational KGs (e.g.,
symmetry, anti-symmetry and transitivity). To bridge the gap, we
propose a logical query reasoning framework, Line Embedding
(LinE), for FOL queries. To relax the distributional assumptions, we
introduce the logic space transformation layer, which is a generic
neural function that converts embeddings from probabilistic distri-
bution space to LinE embeddings space. To tackle multi-relational
and logical complexities, we formulate neural relation-specific pro-
jections and individual logical operators to truthfully ground LinE
query embeddings on logical regularities and KG factoids. Lastly,
to verify the LinE embedding quality, we generate a FOL query
dataset from WordNet, which richly encompasses hierarchical rela-
tions. Extensive experiments show superior reasoning sensitivity of
LinE on three benchmarks against strong baselines, particularly for
multi-hop relational queries and negation-related queries.

CCS CONCEPTS
• Computing methodologies → Knowledge representation
and reasoning; • Theory of computation→ Logic.
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Figure 1: Comparison of Representation Space.

1 INTRODUCTION
Motivations. Thanks to the availability of large-scale knowledge
graphs (KGs), such as Freebase [4], WordNet [20], NELL [5], and
YAGO [33], recent advances in knowledge graph representation
learning have sparked significant research interests in logical query
reasoning over multi-relational KGs. Understanding the relational
properties in a collection of structured knowledge facts plays a piv-
otal role in the rapidly growing field of answering complex logical
queries. Numerous efforts have been devoted to modeling logical
operators or introducing new operators for first-order logical (FOL)
queries on incomplete KGs [12, 15, 23, 24]. For instance, GQE [15]
models both relational projections and set intersection operators by
training neural networks as transformation functions. Query2Box
[23] and BetaE [24] propose box embeddings and beta embeddings,
two novel knowledge representations, to better formalize entities
and logical queries in their respective representation spaces, while
proposing a sophisticated attention mechanism to accurately cap-
ture set intersection behavior. Despite the recent progress, learning
robust knowledge representations to better capture both relational
and logical behavior, however, remains a challenging problem, with
open issues in the following aspects: (i) expressive power on knowl-
edge representations, (ii) preservation of closure properties under
relational/logical operations, and (iii) support for both hierarchical
and non-hierarchical logical query reasoning.

Firstly, most recent logical query reasoning models rely on some
crucial assumptions on knowledge representations to enhance the
expressive power of logical operators. GQE [15] formalizes entities
and queries into a vector space, assuming that logical and rela-
tional behavior can be captured by a single value at each dimension.
Query2Box [23] proposes box embeddings with centre and dis-
tance to box border to improve representation quality. BetaE [24]
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explores Beta distribution to improve representation quality, assum-
ing that logical and relational behaviors can be captured by a Beta
distribution at each dimension in a distributional representation
space. However, these strong assumptions lead to limitations in
the expressiveness and violation tolerance of logical and relational
behavior due to their relatively fixed shapes of assumed distribu-
tion. For example, the relational hierarchy in the triple (“North
America”, contains, “USA”) is not truthfully reflected in the Beta
space as shown in Figure 1(a), where there is no clear indication of
one probability distribution (“North America” in red) encompasses
the other (“USA” in blue). To obtain generic yet versatile represen-
tations to accurately capture logical and relational behavior, it is
essential to equip the representations with better fault tolerance in
logical and relational operations.

Secondly, preserving the closure property under relational/logical
operations in knowledge representations is critical for enabling
compositional computation of complex logical queries in the rea-
soning process. Most prior works only support a subset of logical
operations. For example, region-based representations [23] or dis-
tributional representations [24] do not preserve closure property
under negation operation. Therefore, we need a knowledge repre-
sentation that can comprehensively preserve the closure property
under the logical and relation operations.

Lastly, most prior works tackle logical queries without consider-
ing relation hierarchy in KGs. Hierarchical relations, with anti-
symmetry and partial-order transitivity, are intrinsic in KGs and
thus are natural targets of logical queries. Different relational prop-
erties require different operations in the representation space to
answer both logical queries with and without hierarchical relations.
Nonetheless, relational annotations are usually not available to
explicitly indicate a relation is hierarchical or not. We thus can-
not trivially resort to supervised learning approaches to support
multi-relational logical query reasoning.

Research Contribution. To overcome these challenges, we pro-
pose a novel KG reasoning framework based on Line Embedding
(LinE), for answering FOL queries over KGs. Specifically, to relax
the distributional assumptions we propose to transform logical em-
bedding from the Beta distribution space into a novel logic space,
referred to as the LinE space, where we design competitive logi-
cal functions for logical operators while maintaining the closure
property in the LinE space. To tackle multi-relational and logical
complexities, we design an unsupervised learning approach to regu-
late query and KG entity embeddings in the LinE space, inspired by
[6], using both curvature estimate and Krackhardt score to estimate
the hierarchical relations. In addition, we rigorously generate a
benchmark based on a hierarchical KG (WN18RR) for comprehen-
sive study on reasoning ability of LinE framework. We conduct
experiments over (i) the generalization reasoning setting over 14
types of logical queries, and (ii) three benchmark datasets, includ-
ing the Freebase, NELL, and WordNet which encompasses logical
queries rich in hierarchical relations. In addition, we explore multi-
ple formulations of logical operators and adopt themost competitive
formulations. The main contributions are as follows.

• We propose a logical query reasoning framework (LinE) to pre-
serve multi-relational complexities and logical regularities in
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Figure 2: Examples of symmetric (‘adjoin”), anti-symmetric
(“live in”) and transitive (“contains”) relations on Freebase.

the proposed LinE space. In particular, we propose logical space
transformation and logical query inference to ground LinE em-
beddings to mixed relational and logical regularities.

• We design neural relation-specific projections to sensitively cap-
ture hierarchical and non-hierarchical relational properties in the
KG guided by transitivity (curvature estimate) and anti-symmetry
estimates (Krackhardt score).

• We generate a dataset of first-order logical queries, which heavily
involve hierarchical relations from the benchmark KG WN18RR.

• In extensive experiments on three benchmark KGs, LinE shows
superior reasoning sensitivity to answer logical queries with and
without hierarchical relations against dominant baselines.

2 PRELIMINARIES
We briefly review notions for first-order logic query and relational
properties. Next, we introduce the classic probabilistic representa-
tion space, Beta distribution. Lastly, we formalize the problem of
logical query reasoning in multi-relational KGs.

2.1 Logical Query Reasoning
A knowledge graph G = (V, R) is a multi-relational graph, where
𝑣 ∈ V represents an entity, and each relation type 𝑟 ∈ R is a binary
function 𝑟 : V×V → {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} that indicates the existence of
a type-𝑟 directed edge between a pair of entities. A multi-relational
KG G can be represented by a set of knowledge triples K ⊆ V ×
R ×V , which often exhibits multiple relational properties, such as
symmetry, anti-symmetry and transitivity (Figure 2).

Hierarchical Relation. Relations can be divided into two cat-
egories, non-hierarchical and hierarchical relations, according to
their relational properties.Non-hierarchical relations do not simulta-
neously exhibit anti-symmetric and transitive relational properties.
For example, the relation adjoin in the triple (“England”, adjoin,
“Scotland”) in Figure 2 is a non-hierarchical relation as the triple
remains factually true after the exchange of positions between the
subject and object entities. Hierarchical relations simultaneously
exhibit anti-symmetric and transitive relational properties. The
relation contains in the triple (“United Kingdom”, contains, “Eng-
land”) in Figure 2 is an example of hierarchical relation as it is
simultaneously anti-symmetric and transitive.

Hierarchical Knowledge Graph. KGs can be either hierarchical
or non-hierarchical based on the relational properties in the graphs.
Hierarchical KGs contain at least one hierarchical relation, while
non-hierarchical KGs contain no hierarchical relation.
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Figure 3: Computation graphs.

First-Order Logic Queries. First-order logic (FOL) queries are
queries formulated by logical operators, including conjunction (∧),
disjunction (∨), existential quantification (∃) and negation (¬). An
FOL query 𝑞 can be expressed in disjunctive normal form (DNF),
which is a disjunction of conjunctions as follows.

𝑞 [𝑉?] = 𝑉? . ∃ 𝑉1, . . . ,𝑉𝑤 : 𝑐1 ∨ 𝑐2 ∨ . . . ∨ 𝑐𝑛, (1)
𝑐𝑖 := 𝑒𝑖1 ∧ 𝑒𝑖2 ∧ . . . ∧ 𝑒𝑖𝑚

where 𝑉? is the target variable, {𝑉𝑖 |1 ≤ 𝑖 ≤ 𝑤} are existentially
quantified bound variables, and {𝑐𝑖 |1 ≤ 𝑖 ≤ 𝑛} are conjunction
queries. Target variable 𝑉? indicates the final answer after the rea-
soning process is completed. Each existentially quantified bound
variable 𝑉𝑖 indicates the intermediate results during the reasoning
process. A conjunction query 𝑐𝑖 comprises of one or more atomic
relation queries ∧𝑚

𝑗=1𝑒𝑖 𝑗 .

Atomic Relation Query.An atomic relation query 𝑒𝑖 𝑗 is a relation
projection between a pair of entity sets. Each entity set can be a
non-variable entity, an intermediate variable, or a target variable.
Formally, the atomic relation projection is defined as one of the
following forms:

𝑒𝑖 𝑗 = 𝑟 (𝑣𝑎,𝑉 ) 𝑜𝑟 ¬𝑟 (𝑣𝑎,𝑉 ) 𝑜𝑟 𝑟 (𝑉
′
,𝑉 ) 𝑜𝑟 ¬𝑟 (𝑉

′
,𝑉 ),𝑉 ≠ 𝑉

′
(2)

where 𝑣𝑎 ∈ V𝑎 is a non-variable anchor entity, 𝑉 ∈ {𝑉?} ∪ {𝑉𝑖 |1 ≤
𝑖 ≤ 𝑤} is in the complete set of variables,𝑉

′ ∈ {𝑉𝑖 |1 ≤ 𝑖 ≤ 𝑤} is in
the set of intermediate variables, and 𝑟 ∈ R is a relation type. An
example of atomic relation query 𝑞: “list all participating countries of
2008 Beijing Summer Olympics” is illustrated in Figure 3(a).

Compositional Relation Query. A compositional relation query
comprises of multiple atomic relation queries in an FOL query
𝑞, which is typically structurized as a computation graph. Figure
3(b) illustrates the reasoning steps for the compositional relation
query 𝑞: “list all places of countries that participated in Beijing 2008
Summer Olympics and have not won any medals in Helsinki 1952
Summer Olympics”. Blue circles indicate the anchor entities, “2008
Olympics” and “1952 Olympics Medal”. Green circle indicates the
target variable 𝑉? for the final answer to query 𝑞. Grey circles
indicate the intermediate variables (𝑉1,𝑉2,𝑉3). 𝑞 comprises of three
atomic relation queries, participant, awardedTo and contains. To
derive the answer, our reasoner firstly derives intermediate results
for 𝑉1 and 𝑉2 from anchor entities. Next, our reasoner derives the

complement of 𝑉2, denoted as 𝑉 ′2 , via a negation operator. Then,
the reasoner derives the intersection of 𝑉1 and 𝑉 ′2 , resulting in 𝑉3
(“Fiji”) by an intersection operator. Finally, the reasoner derives the
final answer for 𝑉? (“Suva”) by a relational projection from 𝑉3 via
contains relation.

Hierarchical Logical Query. A logical query may involve multi-
ple relations. We refer to the FOL queries that consist of at least one
hierarchical relation (RT ) as hierarchical logical queries; whereas
the FOL queries comprise of purely non-hierarchical relations (RT )
are referred to as non-hierarchical logical queries.

Hierarchy Estimates. A hierarchy involves relations with anti-
symmetry and transitivity properties [14, 17, 21], such as contains,
hypernym, has_part. KGs are typically structured with mixed rela-
tions without explicit indications of hierarchical property. There-
fore, we need to estimate the anti-symmetry and transitivity to
distinguish hierarchical (RT ) from non-hierarchical relations (RT ).
Motivated by this, we explore two metrics, Krackhardt hierarchy
score (𝐾ℎ𝑠G𝑟 ) [17] and curvature (𝜉G𝑟 ) [14], to estimate the degrees
of anti-symmetry and transitivity for each relation 𝑟 ∈ R, respec-
tively. A relation 𝑟 is considered highly hierarchical if its induced
relation graph G𝑟 (i.e., the graph structured only with relation
𝑟 ) has higher anti-symmetry scores (𝐾ℎ𝑠G𝑟 ) and higher transitiv-
ity scores (𝜉G𝑟 ), and vice versa [14]. Our reasoner is guided by
anti-symmetry scores and transitivity scores to learn respective
relational regularities in KGs. (more details in Section 3.3). We detail
the anti-symmetry and transitivity estimates in Appendix.

2.2 Probabilistic Representation Space
In a probabilistic representation space, both the entities and queries
𝑆 are viewed as probabilistic embeddings. For instance, BetaE [24]
formulates a set of entities 𝑆 ⊆ V as a Beta embedding, which is
essentially a Beta distribution B(·) shaped by two parameters 𝛼 and
𝛽 . The probability density function (PDF) controlled by (𝛼 ,𝛽) is de-
fined as 𝑝 (𝑥) = 𝑥𝛼−1 (1−𝑥)𝛽−1

B(𝛼,𝛽) . An ℎ-dimensional Beta embedding of

an entity set 𝑆 (𝐵𝑆 ∈ R2×ℎ) consists of ℎ independent Beta distribu-
tions on the interval [0,1], denoted as 𝐵𝑆 = [(𝛼𝑆1 , 𝛽

𝑆
1 ), · · · , (

𝑆
ℎ
, 𝛽𝑆
ℎ
)]

with 𝑥 ∈ [0, 1]. Note that a single entity is equivalently a set of a
single element, and thus each entity itself in ℎ-dimensional Beta
distribution space is also an ℎ-dimensional Beta embedding. A
query 𝑞 after executing logical operators (∧, ∨, ∃ and ¬) and rela-
tional projections (𝑟 ∈ R) in the ℎ-dimensional Beta representation
space remains a ℎ-dimensional Beta embedding, thanks for the
closure property of BetaE. Nevertheless, BetaE is bounded by a
strong distributional assumption, which limits representations into
a presumed distributional shape. BetaE clearly limits its expressive
power to (i) sensitively deal with mixed relational regularities (e.g.,
relational hierarchy), and (ii) represent entities and queries beyond
Beta shapes. We therefore tackle the challenges of limited expres-
siveness by relaxing the distributional assumption and designing a
more relation-sensitive representation space.

2.3 Problem Statement
Given a multi-relational KG G = (V, R) and an FOL query 𝑞 with
relational and logical compositions, our goal is to enable hierarchical
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Figure 4: The model architecture of LinE. The green color indicates the training process, while the yellow color indicates the
real-time testing process for unseen queries. (a) For training, LinE takes as input the KG and pairs of logical queries and an-
swers. (b) Given the computation graph for each query, the entity embedding initialization (EEI) component generates the
initial embeddings for KG entities in a probabilistic representation space (blue area). (c) We present the logic space transfor-
mation (LST) to better capture multi-relational and logical regularities. The statistical view of the initial entity embeddings is
thus generated to learn the entity embeddings in the LinE representation space (LinE space). (d) The logical query inference
(LQI) component learns a set of relation-specific neural functions and refines the embeddings for KG entities and queries
based on multi-relational and logical regularities in the LinE space (pink area). (e) To optimize, two training objectives, query
inference loss and reasoning loss, are proposed to jointly preserve multi-relational and logical regularities in the LinE space.

logical query reasoning of 𝑞 over G. Our approach is to design a
novel neural logical reasoning framework that supports logical
operators (∧, ∨, ∃ and ¬) and relation-specific projections (R) for
expressive specification of the FOL query (𝑞); and return a set of
entities (𝑉? ⊆ V) that satisfy𝑞 over the facts captured by G.

3 LINE EMBEDDINGS
We present our Line Embeddings model (LinE) that performs com-
positional relational projections and logical operations for logical
queries. We first give an overview of the reasoning pipeline. We
detail the key components and our training objectives.

3.1 Reasoning Pipeline Overview
The proposed reasoning model, LinE, supports a complete set of
first-order logic operations and the relation-specific projections in
the LinE space. Figure 4 illustrates the reasoning pipeline. Given
a KG (G), a set of query answering (QA) pairs as a training set
TQ = {𝑞1, 𝑞2, · · · , 𝑞𝑛} and TA = {𝑞1 [𝑉?], 𝑞2 [𝑉?], · · · , 𝑞𝑛 [𝑉?]}, we
train a logical query reasoner to answer FOL queries by perform-
ing relational projections and logical operations in order to closely
approach the true answers in the LinE space. For each query 𝑞𝑖 as
input, its computation graph is generated to indicate the reasoning
steps. We follow the reasoning steps to execute logical operators in
the query and obtain KG entity embeddings in the BetaE space as

the initial entity embeddings. To enhance the expressive power, we
propose a logic space transformation (LST) to project the initial en-
tity embeddings from the BetaE space to the LinE space. The logical
query inference (LQI) is proposed to refine the transformed embed-
dings for KG entities and query 𝑞𝑖 by imposing multi-relational and
logical regularities in the LinE space. Logical operations (∧, ∨, ∃
and ¬) and relation-specific projections (𝑟 ∈ R) are mathematically
formulated. To preserve the multi-relational and logical regularities,
we formulate (i) reasoning loss to estimate the distances between the
query embedding and answer candidates; and (ii) query inference
loss to estimate relational violations and deviations from logical
regularities, respectively. Lastly, the final answers are obtained by
performing nearest-neighbor search (NNS) for the final query em-
bedding and returning the closest entities (𝑉? ⊆ V) to query 𝑞𝑖 in
the LinE space.

3.2 Logic Space Transformation
We introduce logic space transformation (LST), which transforms
representations from a probabilistic representation space (source)
to the LinE space (target) with enhanced expressive power. Specifi-
cally, we propose a neural transformation from the source to target
logic space to (i) preserve a diverse aspect of properties in Beta
distribution; (ii) support multi-relational projections and logical
operations in the LinE space.
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Figure 5: Logic Space Transformation: the top and bottom
row depict the 200-dimensional Beta embedding and 200-
dimensional LinE Embedding at positions (0.25, 0.50, 0.75).

LinE Representation Space. In the LinE space, both the en-
tities and queries 𝑆 are represented as LinE embeddings, a low-
dimensional representation, whereby each dimension in its general
form is expressed as a sequence of 𝑘 values. LinE embeddings
are no longer restricted by any distributional shape like B(·). For-
mally, an ℎ-dimensional LinE embedding for the set 𝑆 is defined
as 𝐿𝑆 = [(𝑝𝑆

𝑗,1, 𝑝
𝑆
𝑗,2, · · · , 𝑝

𝑆
𝑗,𝑘
)]ℎ
𝑗=1 ∈ R

𝑘×ℎ across 𝑘 positions in the
range [0, 1] per dimension 1 ≤ 𝑗 ≤ ℎ. For instance, supposewewant
to learn 200-dimensional LinE embeddings with a sequence of three
values per dimension. A logic space transformation function pre-
dicts values at three positions (e.g., {0.25, 0.50, 0.75}) per dimension
in the LinE space, and forms the 200-dimensional LinE embedding
[(𝑝 𝑗,0.25, 𝑝 𝑗,0.50, 𝑝 𝑗,0.75)]200𝑗=1. Figure 5 illustrates the comparison be-
tween a Beta embedding and the LinE embedding. Note that LinE
embedding preserves the closure property because the following
properties hold. First, each entity itself in the LinE space is an ℎ-
dimensional LinE embedding because an entity is equivalently a
set with a single element. Second, a query 𝑞, after executing logical
operators (∧, ∨, ∃ and ¬) and relational projections (𝑟 ∈ R) as ap-
propriate in the LinE space, returns a set of answer entities, which
is also a LinE embedding in ℎ-dimensional LinE space. In this work,
we learn neural transform functions in two steps: (i) augmenting
the entity features based on the 𝑛-dimensional Beta embedding in
the source logic space; and (ii) applying an entity-wise learnable
function to derive LinE embeddings.

Statistical View Generation. To obtain effective features, we ex-
plore multiple features, which statistically describe the shapes of
Beta distributions. The neural transformation function optimizes
the network parameters so that two entities with the same shape
features are likely to share the same initial LinE embeddings. Specif-
ically, we consider the following shape features.

• 𝛼 and 𝛽 : 𝛼 and 𝛽 are explicit parameters of a Beta distribution.
Given an ℎ-dimensional Beta embedding 𝐵𝑆𝑖 for entity set 𝑆𝑖 , we
obtain the ℎ pairs of (𝛼 ,𝛽) parameters as input features for the
neural transformation function as follows.

𝐵𝑆𝑖 = [(𝛼𝑆𝑖
𝑗
, 𝛽
𝑆𝑖
𝑗
)]ℎ𝑗=1 ∈ R

2×ℎ (3)

• Mean and Variance: Mean (𝜇 (X)) measures the central ten-
dency of a Beta distribution. Variance (𝑣𝑎𝑟 (X)) measures the
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Figure 6: Logical operations for BetaE and LinE embeddings:
(a) intersection, (b) union, and (c) negation operations. Note
that BetaE cannot directly handle union operations.

statistical dispersion of a distribution. The calculation of mean
and variance can be found in Appendix. Given an ℎ-dimensional
Beta embeddings 𝐵𝑆𝑖 for set 𝑆𝑖 , we obtain ℎ pairs of mean and
variance for ℎ Beta distributions as follows.

𝑃𝑆𝑖 = [(𝜇 (X𝑗 )𝑆𝑖 , 𝑣𝑎𝑟 (X𝑗 )𝑆𝑖 )]ℎ𝑗=1 ∈ R
2×ℎ . (4)

Neural Transformation. To learn an entity-wise neural transfor-
mation function, we adopt a Multi-Layer Perceptron (MLP) with the
shape features as input. Formally, given𝑛 entity sets S={𝑆1, · · · , 𝑆𝑛},
the shape features extracted from𝑛 Beta embeddings F={𝐹1, · · · , 𝐹𝑛}
is fed to an entity-wise MLP, which generates 𝑛 LinE embeddings
L={𝐿1, · · · , 𝐿𝑛}. A neural network that converts a set of Beta em-
beddings to a set of LinE embeddings is trained as follows.

L = MLP(F) (5)
𝐹𝑆𝑖 = [𝐵𝑆𝑖 ] | [𝑃𝑆𝑖 ],∀𝑆𝑖 ∈ S

𝐿𝑆𝑖 = [(𝑝𝑆𝑖
𝑗,1, · · · , 𝑝

𝑆𝑖
𝑗,𝑘
)]ℎ
𝑗=1 ∈ R

𝑘×ℎ,∀𝑆𝑖 ∈ S

where 𝐹𝑖 ∈ 𝐹 is the final shape feature concatenated from any of
𝐵𝑆𝑖 and 𝑃𝑆𝑖 for entity set 𝑆𝑖 .

3.3 Logical Query Inference
Logical query inference (LQI) grounds in knowledge triples and log-
ical regularities in the LinE space to support compositional logical
query inference. Given the computation graph for a query 𝑞, LQI
derives the final LinE embedding for 𝑞 by executing logical opera-
tors (∧, ∨, ∃ and ¬) and relation-specific projections (𝑟 ∈ R) in the
computation graph. We describe each logical operator and relation-
specific projection in the LinE space, including relational projection
𝑋𝑟 , intersection 𝐿𝐼𝑛𝑡𝑒𝑟 , negation 𝐿𝑁𝑒𝑔 , and union 𝐿𝑈𝑛𝑖𝑜𝑛 .

Relation-Specific Projection. Relations in multi-relational KGs
have diverse properties: symmetric (e.g., adjoins), anti-symmetric
(e.g., is_a_member_of ), and transitive relations (e.g., contains). Pre-
serving each type of relational behavior therefore requires a range
of neural functions to capture relational properties in latent repre-
sentation space.

To capture diverse relational properties in KGs, each atomic rela-
tional projections of any forms in Eq. (2) in a compositional logical
query is realized by a relation-specific projection 𝑋𝑟 for each 𝑟 ∈ R.
For illustration, given an atomic relation query 𝑟 (𝑣𝑎,𝑉 ), a relation-
specific projection learns a projection function 𝑋𝑟 that takes 𝑣𝑎 as



input and projects 𝑣𝑎 closer to the representations of a set of tail en-
tities, corresponding to the existentially quantified bound variables
𝑉 , in the LinE space. A projection function𝑋𝑟 is formulated as a neu-
ral network for the relation type 𝑟 ∈ R by a Multi-Layer Perceptron
MLP𝑟 with ReLU as activation function as follows.

𝐿̂𝑆 𝑗 (𝑆𝑖 , 𝑟 ) = MLP𝑟 (𝐿𝑆𝑖 ) (6)

where 𝐿𝑆𝑖 and 𝐿̂𝑆 𝑗 (𝑆𝑖 , 𝑟 ) denote the LinE embedding of an entity
set 𝑆𝑖 = {𝑣𝑖 } and the estimated LinE embedding for the entity set
𝑆 𝑗 = {𝑣 𝑗 } after projection via relation 𝑟 from 𝑣𝑖 , with respect to the
knowledge triples 𝑟 (𝑆𝑖 ,𝑆 𝑗 ) ∈ K in the LinE space.

Relational Regulations. To sensitively capture mixed structural
regularities in a KG, we use hierarchy estimates in Section 2.1
to disjointly distinguish hierarchical (RT ) and non-hierarchical
relations (RT ). Accordingly, we propose the following relational
regulationsDT andDT to preserve hierarchical relations (RT ) and
non-hierarchical relations (RT ), respectively, where RT

⋂RT = ∅
and RT

⋃RT = R.

To preserve the hierarchical properties in the LinE space, the hier-
archical violation against knowledge triples K is approximated by
minimizing the following order violation.

DT =
∑

𝑟 (𝑆𝑖 ,𝑆 𝑗 ) ∈KT
max{0, 𝐿𝑆𝑖 − 𝐿̂𝑆 𝑗 (𝑆𝑖 , 𝑟 )},∀𝑟 ∈ RT (7)

where KT = 𝑟 (𝑆𝑖 , 𝑆 𝑗 ) ⊆ K is the set of triple bounded by hi-
erarchical relations 𝑟 ∈ RT . In essence, Eq. (7) encourages LinE
embeddings for entity set 𝑆𝑖 ⊆ V associated with entity set 𝑆 𝑗 ⊆ V
via hierarchical relation 𝑟 to have smaller 𝐿𝑆𝑖

𝑑
than 𝐿𝑆 𝑗

𝑑
for every di-

mension 𝑑 ∈ [1, ℎ] in the LinE space, where 𝐿𝑆
𝑑
∈ R. A triple 𝑟 (𝑆𝑖 ,𝑆 𝑗 )

has zero order violation if 𝐿𝑆𝑖
𝑑
≤ 𝐿𝑆 𝑗

𝑑
in the LinE space.

To preserve the non-hierarchical properties in LinE space, the LinE
embeddings associated with non-hierarchical properties are alter-
natively regulated by the Mean-Square Error (MSE).

DT =
∑

𝑟 (𝑆𝑖 ,𝑆 𝑗 ) ∈KT

(𝐿𝑆 𝑗 − 𝐿̂𝑆 𝑗 (𝑆𝑖 , 𝑟 ))2,∀𝑟 ∈ RT (8)

where KT = 𝑟 (𝑆𝑖 , 𝑆 𝑗 ) ⊆ K is the set of triples bounded by non-
hierarchical relations 𝑟 ∈ RT . Eq. (8) essentially preserves the L2-
distance between LinE embeddings and the projected LinE embed-
dings of the entity set 𝑆 𝑗 , i.e., forcing 𝐿𝑆 𝑗 to be as close to 𝐿̂𝑆 𝑗 (𝑆𝑖 , 𝑟 )
obtained by the neural function MLP𝑟 (𝐿𝑆𝑖 ) as possible.

Intersection Operator. The intersection of multiple quantities is
essentially the minimum of all. Following this intuition, we pro-
pose to use min function to simulate the intersection operation.
As shown in Figure 6(a), given 𝑛 ℎ-dimensional LinE embeddings
{𝐿𝑆1 , 𝐿𝑆2 , ..., 𝐿𝑆𝑛 }, we calculate the intersection 𝐿𝐼𝑛𝑡𝑒𝑟 by simply ap-
plying the minimum function, to amplify the agreements amongst
𝑛 LinE embeddings across 𝑑 ∈ [1, ℎ]. The intersection operator is
formally defined as follows.

𝐿𝐼𝑛𝑡𝑒𝑟 = [min{𝑝𝑆11 , 𝑝
𝑆2
1 , ..., 𝑝

𝑆𝑛
1 }, ...,min{𝑝𝑆1

𝑘
, 𝑝
𝑆2
𝑘
, ..., 𝑝

𝑆𝑛
𝑘
}]ℎ (9)

where 𝑝𝑆𝑖
𝑗
represents the 𝑗-th position in the LinE embedding 𝐿𝑆𝑖

for 𝑖-th entity set and 𝑘 is the number of sampled positions.

Union Operator. Prior work dealt with union operations by dras-
tically restructuring the computation graphs into DNF [24]. On the
contrary, we directly formulate the union operator with a maxi-
mum function for given LinE embeddings as shown in Figure 6(b).
Formally, the union is defined as follows.

𝐿𝑈𝑛𝑖𝑜𝑛 = [max{𝑝𝑆11 , 𝑝
𝑆2
1 , ..., 𝑝

𝑆𝑛
1 }, ...,max{𝑝𝑆1

𝑘
, 𝑝
𝑆2
𝑘
, ..., 𝑝

𝑆𝑛
𝑘
}]ℎ (10)

where 𝑝𝑆𝑖
𝑗
represents the 𝑗-th value in the LinE embedding 𝐿𝑆𝑖 for

the entity set 𝑆𝑖 , and 𝑘 is the number of sampled positions.

Negation Operator. Given the Beta embedding (𝛼 ,𝛽) for a set 𝑆 ,
we follow a prior work [24] to compute ( 1𝛼 ,

1
𝛽
) as the negation of

(𝛼, 𝛽) as illustrated in Figure 6(c). Formally, we define the negation
operation for LinE embeddings for the set 𝑆 as follows.

𝐿𝑁𝑒𝑔 = [
1
𝑝𝑆1
,
1
𝑝𝑆2
, ...,

1
𝑝𝑆
𝑘

]ℎ (11)

where 𝑝𝑆
𝑗
represents the 𝑗-th position in the LinE embedding 𝐿𝑆

and 𝑘 is the number of sampled positions.

Logical Regulations. Intuitively, the closer the resulting LinE em-
beddings after intersection operators to the initial transformed LinE
embeddings for ground-truth answer entities, the better quality
of refined LinE embeddings. To preserve the logical laws in the
LinE space, the violations against the intersection operators (∧) is
formulated as an MSE estimator as follows.

D𝐹𝑂𝐿 =
∑

𝐿̂𝐼𝑛𝑡𝑒𝑟 :=∩𝑛𝑖=1𝐿𝑆𝑖
(𝐿̂𝐼𝑛𝑡𝑒𝑟 − 𝐿𝐼𝑛𝑡𝑒𝑟 )2 (12)

where 𝐿̂𝐼𝑛𝑡𝑒𝑟 is the LinE embedding after performing intersection
for 𝑛 LinE embeddings 𝐿𝑆𝑖 with 𝑖 ∈ [1, 𝑛], and 𝐿𝐼𝑛𝑡𝑒𝑟 is the LinE
embedding of the true answers.

3.4 Logical Query Reasoning
Joint Learning Objective. We consider both reasoning loss and
query inference loss to jointly optimize LinE embeddings and pa-
rameterized neural functions as follows.

L = LA + 𝜆LQ (13)

where LA is the reasoning loss, LQ is the query inference loss,
and 𝜆 is a hyper-parameter controlling their respective importance.
We describe each of them in the following.

Reasoning Loss. The reasoning loss estimates the distance be-
tween a logical query 𝑞 and its true answer in the LinE space. Let
𝑆𝑦 = {𝑣𝑦 |𝑣𝑦 ∈ V} be the true answers to the query 𝑞. For each true
query and answer pair (𝑞, 𝑣𝑦), we randomly select 𝐾 false answers
𝑣𝑦′ , 𝑆𝑦′ = {𝑣𝑦′ |𝑣𝑦′ ∈ V}. To optimize, we minimize the skip-gram
loss LA on training pairs TQ and TA as follows.

LA = − log(𝛾−D𝑄𝐴 (𝐿𝑣𝑦 , 𝐿𝑞))−
∑

𝑣𝑦′ ∈𝑆𝑦′

1
𝐾

log(D𝑄𝐴 (𝐿𝑣𝑦′ , 𝐿𝑞)−𝛾)

(14)
where 𝐿𝑞 is the query embedding, 𝐿𝑣𝑦 is the true answer embedding
in the LinE space,D𝑄𝐴 is the MSE estimator for a QA pair, and 𝛾 is
a margin. Eq. (14) encourages the query 𝐿𝑞 to be positioned closer
to the true answers within 𝛾 L2-distance while far away from the
false answers at least 𝛾 L2-distance in the LinE space.



Table 1: The Statistics of logical queries datasets.

KG |V | |R | |K | 1p 2p 3p 2i 3i ip pi 2u up 2in 3in inp pin pni
FB15k-237 14,505 273 149,689 192,602 159,689 159,689 159,689 159,689 10,000 10,000 10,000 10,000 24,968 24,968 24,968 24,968 24,968
NELL995 63,361 200 107,982 141,943 115,982 115,982 115,982 115,982 8,000 8,000 8,000 8,000 18,798 18,798 18,798 18,798 18,798
WN18RR 40,943 11 103,509 114,067 105,509 105,509 105,509 105,509 2,000 2,000 2,000 2,000 12,350 12,350 12,350 12,350 12,350

Query Inference Loss. The logical inference loss estimates the
relational violations and the deviations from logical regularities, in
particular, intersections executed in a computation graph for query
𝑞. The query inference loss is formally defined as follows.

LQ =
∑
𝑟 ∈RT

DT +
∑
𝑟 ∈RT

DT +
∑
∩
D𝐹𝑂𝐿 (15)

whereDT andDT are the relational violationsmeasured against hi-
erarchical and non-hierarchical relations, respectively. D𝐹𝑂𝐿 mea-
sures the logical violations against intersection operations. Note
that due to limitations in training QA pairs, we only regulate LinE
embeddings with respect to queries using intersection operators
throughout the corresponding computation graphs.

Example. Given a query 𝑞, LinE optimizes LinE embeddings and
the set of parameterized relational/logical functions by Eq.13. The
specific learnable items for the example query in Figure 3(b) are as
follows: (i) the set of participant countries of 2008 Beijing Olympics
(𝑉1) via “participant” relational projection (Eq.6); (ii) the set of coun-
tries won medals in 1952 Helsinki Olympics 𝑉 via “awardedTo”
relational projection (Eq.6); (iii) the complement of set 𝑉 (𝑉2), ob-
tained by performing negation (Eq.11); (iv) the set of countries (𝑉3)
by performing intersection between 𝑉1 and 𝑉2 (Eq.9); and lastly (v)
the set of places in set 𝑉3 (𝑉?) via “contains” relational projection
(Eq.6). Entities in 𝑉? are returned as the final answers to query 𝑞,
which is the capital city in Fiji (“Suva”).

4 EXPERIMENTS
To understand the reasoning performance of LinE, we study four
research questions as follows. RQ1: What is the reasoning ability
across complex logical queries?, RQ2: What is the reasoning ability
for logical queries with and without hierarchical relations?, RQ3:
What is the impact of logic space transformation?, and RQ4: What is
the impact of relation projections and logical operators?.

4.1 Datasets
We consider three KG benchmark datasets for FOL query reason-
ing. FB15k-237 [4] and NELL995 [5] are collections of relations
between entities constructed from FB15k and the Never-Ending
Language Learning (NELL) system, respectively. WN18RR [13] is
a hierarchical collection of relations between words created from
WordNet [20]. Data statistics on logical queries and KGs are sum-
marized in Table 1 (see Appendix C and D for more details).

4.2 Experimental Settings
Baselines.We consider two dominant categories of baselines for
FOL queries reasoning on KGs: (i) generic logical query reasoners
(GQE [15], Q2B [23], BetaE [24]), which formulate embeddings in

Euclidean space; and (ii) hierarchical logical query reasoners (HypE
[12]), which formulate embeddings in Hyperbolic space.

Metrics. To evaluate the performance of examined methods, we
measure the answer quality by the ranking of the true answers. We
report two standard evaluation metrics: MRR and HITS@N, which
is the fraction of correct answers in the top-𝑁 candidates.

4.3 Query Reasoning Complexity (RQ1)
Setup. To study the reasoning complexity of logical queries, we
follow the formulation of the generalization reasoning task on 14
queries with at least one link prediction [23] to evaluate the per-
formance in generalizing to plausible answers. We evaluate the
task on three benchmarks, including FB15k-237, NELL995 and
WN18RR. To evaluate the reasoning sensitivity to query diver-
sity, we divide 14 query structures into three categories: (i) relation-
heavy: queries that are purely tied to relation projections (1p/2p/3p),
(ii) logic-heavy: queries that are heavily tied to logical operations
(2i/3i/ip/pi/2u/up), and (iii) negation-related: queries that involve
negation operator as shown in Figure 7 in Appendix C.

Result. Table 2 reports the comparative results for each query
group on three benchmarks. First, we observe that BetaE and LinE
consistently outperform other baselines (GQE, Q2B and HypE)
across three benchmarks. For example, LinE achieves significant
performance gain against HypE by nearly 6.69% and 98.76% for
avg𝑝 and avg𝑙 in MRR on FB15k-237, respectively. Note that HypE
cannot deal with negation operator and thus no comparison on
avg𝑛 . Second, LinE achieves considerable performance gain in most
cases on three benchmarks compared to BetaE. In particular on
FB15k-237, LinE shows superior reasoning ability on relation-heavy
(5.71% gain in avg𝑝 MRR), logic-heavy (7.56% gain in avg𝑙 MRR) and
negation-related queries (19.46% gain in avg𝑛 MRR). This suggests
that LinE generally shows superior reasoning ability, particularly
relation-heavy and negation-related queries despite the occasional
miss on logic-heavy queries.

4.4 Hierarchical Logical Query (RQ2)
Setup. To study the reasoning ability for hierarchical logical queries,
we adopt curvature estimates and Krackhardt scores to estimate the
relational hierarchy for each relation (𝑟 ∈ R) on three benchmarks.
The estimation suggests that WN18RR richly contains hierarchi-
cal relations compared to FB15k-237 and NELL995 as shown in
Table 4. Thus, we additionally generate 14 types of FOL queries
for WN18RR (Table 1) to investigate the reasoning sensitivity to
hierarchical logical queries (Appendix D).

Results. In Table 3, we observe that both LinE and BetaE out-
perform other baselines (GQE, Q2B and HypE) across each query
group in both MRR and HITS@3. For example, compare to BetaE on



Table 2: Performance comparison in MRR and HITS@3 (%) on benchmarks. avg𝑝 , avg𝑙 , and avg𝑛 denote the average MRR on
relation-heavy, logic-heavy, and negation-related queries, respectively. Best (second best) of each column are in bold (under-
lined). The last row shows relative improvement (%) of LinE𝛼,𝛽 compared to the best baseline.

Model
MRR HITS@3

FB15k-237 NELL995 WN18RR FB15k-237 NELL995 WN18RR
avg𝑝 avg𝑙 avg𝑛 avg𝑝 avg𝑙 avg𝑛 avg𝑝 avg𝑙 avg𝑛 avg𝑝 avg𝑙 avg𝑛 avg𝑝 avg𝑙 avg𝑛 avg𝑝 avg𝑙 avg𝑛

GQE 9.85 10.43 - 12.26 12.95 - 8.41 11.62 - 12.58 12.24 - 18.06 15.79 - 12.70 16.48 -
Q2B 13.04 13.89 - 14.59 16.17 - 9.80 16.25 - 15.15 16.07 - 21.79 19.04 - 15.97 27.08 -
BetaE 17.50 16.41 4.78 19.79 16.60 5.11 19.28 32.83 17.87 18.50 17.47 3.97 21.61 17.84 4.51 20.11 35.64 19.08
HypE 17.34 8.88 - 18.25 14.50 - 9.62 19.83 - 18.46 8.82 - 20.53 15.65 - 14.46 24.43 -
LinE𝛼,𝛽 18.50 17.65 5.71 22.27 17.52 5.46 21.39 28.21 18.72 19.69 19.04 4.40 24.32 18.87 4.72 22.17 30.12 20.37
Rel. Gain (%) 5.71 7.56 19.46 12.53 5.54 6.85 10.94 -14.07 4.76 6.43 8.99 10.83 11.61 -0.89 4.66 10.24 -15.49 6.76

Table 3: Performance comparison onWN18RR. Best (second best) of each column are in bold (underlined). The last row shows
relative improvement (%) of LinE𝛼,𝛽 compared to the best baseline.

Model WN18RR
1p 2p 3p 2i 3i ip pi 2u up 2in 3in inp pin pni avg𝑝 avg𝑙 avg𝑛

M
R
R

GQE 18.02 4.54 2.68 19.32 23.97 10.60 9.91 2.37 3.55 - - - - - 8.41 11.62 -
Q2B 22.46 4.63 2.31 25.59 41.23 11.04 13.27 2.89 3.47 - - - - - 9.80 16.25 -
BetaE 44.13 9.85 3.86 57.19 76.26 17.97 32.59 7.57 5.39 12.77 59.98 5.07 4.04 7.48 19.28 32.83 17.87
HypE 20.93 5.40 2.54 30.10 58.06 9.30 13.44 3.52 4.54 - - - - - 9.62 19.83 -
LinE𝜇,𝑣𝑎𝑟 44.02 9.70 4.63 44.84 65.12 13.20 21.95 7.26 5.49 11.98 58.78 5.87 4.21 7.55 19.45 26.31 17.68
LinE𝛼,𝛽 45.12 12.35 6.70 47.11 67.13 14.73 24.87 8.49 6.93 12.50 60.81 7.34 5.20 7.74 21.39 28.21 18.72
Rel. Gain (%) 2.24 25.38 73.58 -17.63 -11.97 -18.03 -23.69 12.15 28.57 -2.11 1.38 44.77 28.71 3.48 10.94 -14.07 4.76

H
IT

S@
3

GQE 30.86 4.68 2.57 31.67 37.90 11.02 13.30 2.25 2.77 - - - - - 17.70 16.48 -
Q2B 42.11 3.73 2.07 48.27 76.55 11.39 20.53 3.10 2.62 - - - - - 15.97 27.08 -
BetaE 46.01 10.42 3.92 63.99 81.20 19.89 35.11 7.90 5.73 13.12 65.75 5.01 4.21 7.33 20.11 35.64 19.09
HypE 36.07 5.00 2.32 38.59 73.75 10.73 16.36 3.17 3.98 - - - - - 14.46 24.43 -
LinE𝜇,𝑣𝑎𝑟 46.03 11.00 4.91 47.28 70.52 14.22 24.49 7.73 5.52 13.03 65.63 5.84 4.39 8.27 20.65 28.29 19.43
LinE𝛼,𝛽 47.08 12.87 6.56 49.46 72.12 15.85 26.66 9.40 7.24 13.22 66.56 8.25 5.79 8.04 22.17 30.12 20.37
Rel. Gain (%) 2.33 23.51 67.35 -22.71 -11.18 -20.31 -24.07 18.99 26.35 0.76 1.23 64.67 37.53 9.69 10.24 -15.49 6.71

relation-heavy queries, LinE achieves nearly 10.94% improvement
in MRR (avg𝑝 ). Particularly, LinE improves the answer accuracy
for 2p and 3p queries with nearly 25.38% and 73.58% in MRR, re-
spectively. For negation-related queries, LinE slightly outperforms
BetaE with 4.76% improvement in MRR. For logic-heavy queries, Be-
taE occasionally outperforms LinE, which constitutes 14.07% overall
loss in MRR. We leave this improvement for future work.

4.5 Logic Space Transformation (RQ3)
To evaluate the effectiveness of statistical signals, we study the
neural transformation functions that project entity representations
from the Beta distribution (BetaE) to the LinE space. We compare
two types of statistical signals, (𝛼 ,𝛽) and (𝜇, 𝑣𝑎𝑟 ), given the same
MLPs setting. In Table 3, we observe that LinE𝛼,𝛽 outperforms
LinE𝜇,𝑣𝑎𝑟 across 14 query types on WN18RR. This suggests that
overall LinE𝛼,𝛽 gives a more reliable performance with (𝛼 ,𝛽) as the
primary statistical signals for logic space transformation with and
without hierarchical relations.

4.6 Relation and Logical Operators (RQ4)
In this section, we study the effectiveness of relational projection
and union operator in the LinE space.

Relation-specific Projection. We search for the optimal setting
with 1,600 hidden dimensions and the two layers as our final MLPs
setting. Table 2 reports the average MRR (avg𝑝 ) and HITS@3 (avg𝑝 )
for relation-heavy queries (1p/2p/3p) across benchmarks. Our rela-
tional projections in LinE𝛼,𝛽 significantly outperform BetaE across
benchmarks. LinE achieves 73.58% relative gain inMRR, particularly
for the most complex queries (3p) on WN18RR (Table 3).

Union. DNF [23, 24] has proven superiority in the literature. We
study both (i) DNF, and (ii) U (Eq.10) to evaluate their effectiveness.
Table 7 (Appendix E) shows that our LinE𝛼,𝛽 with DNF outperforms
U on union queries (2u/up). As a result, the DNF is still the most
effective formulation for union operators. Note that although U
is slightly less effective than DNF for union queries, DNF takes
extra computation to alter the logical query structures. Overall, our
straightforward formulation is fairly competitive to DNF.

5 RELATEDWORK
Logical Query Reasoning. Logical query reasoning has been
recently received growing interest, in particular, the class of exis-
tential first-order logical queries (EPFO) which includes the logical
and existential operator. To answer complex logical queries over



the KGs, some attempts have been made to formalize entities and
queries as points [1, 15], or as regions [12, 22, 23], or as distributions
[24] in high-dimensional representation space. GQE [15] embed-
ded logical queries and entities in vector space, nonetheless GQE
only supported conjunctive queries with ∃ and ∧. Query2Box [23]
formalized entities and logical queries in box representation space,
supporting ∃, ∧ and ∨ operators. HypE [12] formalizes entities
as hyperboloid into Poincaré ball to better supports FOL queries
except the negation operator. BetaE [24] formalizes entities and
queries as Beta distributions. The closure property of Beta distribu-
tion enables BetaE to tackle FOL queries with ∃, ∧, ∨, and ¬. Other
attempts have been made to formalize entities and queries using
different estimators [8, 11, 19, 26, 27, 35]. LogicE [19] combined
query embeddings with the inductive bias of real-valued logic and
also supports ∧, ∨ and ¬. Others attempted to learn logic operators
as neural modules for reasoning [7, 18, 25].

Multi-relational Graph Embeddings. Our work is related to
existing efforts on multi-relational knowledge graph embeddings,
which solve knowledge graph reasoning by learning entity and
relation embeddings in latent spaces. Some studies addressed limi-
tations in conventional vector spaces by learning better representa-
tions for multi-relational knowledge graphs [3, 6, 32]. MuRP [3] em-
bedded multi-relational graph data into Poincaré ball in hyperbolic
space, and proposed to use Krackhardt score as hierarchy estimates
for relations. RefH, RotH, and AttH are classic hyperbolic knowl-
edge graph embedding that captures hierarchical information by
adopting both curvature estimate and Krackhardt score to estimate
the relational hierarchy. Order embeddings capture relational tran-
sitivity effectively [2, 10, 28, 29]. Some addressed the complexity of
multi-hop knowledge graph completion [9, 16, 30, 31, 34]. For exam-
ple, RLH [30] is proposed to solve multi-hop knowledge graph rea-
soning that addresses the multiple semantic issues where a relation
in knowledge graphs may carry different meanings. MCMH [34]
provided a new method for knowledge graph completion through
learning multi-chain multi-hop rules.

6 CONCLUSIONS
We present a logical query reasoning framework (LinE) to preserve
multi-relational complexities and logical regularities in the LinE
space. LinE consists of a logic space transformation component to
better support relational and logical operations by relaxing strong
distributional assumptions. We design neural relation-specific pro-
jections to sensitively capture mixed relational properties in the
KG guided by curvature estimate and Krackhardt score. We also
generate FOL queries of 14 types from WN18RR to investigate the
reasoning sensitivity for hierarchical logical queries. The results
demonstrate the superior reasoning sensitivity of LinE for diverse
FOL queries against dominant baselines.
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Appendices

A BETA DISTRIBUTION
Mean. The expected value 𝜇 of a Beta distributed random variable
X is formally defined with (𝛼 ,𝛽) as follows.

𝜇 (X) = 𝐸 [X] = 𝛼

𝛼 + 𝛽 (16)

Variance. The expected variance 𝑣𝑎𝑟 of a Beta distributed random
variable 𝑋 is formally defined with (𝛼 ,𝛽) as follows.

𝑣𝑎𝑟 (X) = 𝐸 [(X − 𝜇 (X))2] = 𝛼𝛽

(𝛼 + 𝛽)2 (𝛼 + 𝛽 + 1)
(17)

B HIERARCHY ESTIMATE
Anti-symmetry Scores. The Krackhardt hierarchy score 𝐾ℎ𝑠G𝑟
[17] that captures the local anti-symmetry property of a relation
graph G𝑟 is defined as follows.

𝐾ℎ𝑠G𝑟 =

∑𝑛
𝑖=1

∑𝑛
𝑗=1𝐴𝑖, 𝑗 (1 −𝐴 𝑗,𝑖 )∑𝑛
𝑖=1

∑𝑛
𝑗=1𝐴𝑖, 𝑗

(18)

where 𝐴 is the adjacency matrix. 𝐴𝑖, 𝑗 = 1 if there is an edge from
node 𝑣𝑖 to node 𝑣 𝑗 and 0 otherwise. 𝐾ℎ𝑠G𝑟 is in the range [0,1],
where 𝐾ℎ𝑠G𝑟 =0 if 𝑟 is a fully symmetric relation and 𝐾ℎ𝑠G𝑟 =1 if 𝑟
is a fully anti-symmetric relation.

Transitive Scores. The curvature estimate 𝜉G𝑟 [14] that captures
the global transitive behaviours for a given relation graph G𝑟 is
formally defined as follows.

𝜉G𝑟 =
1
|ΔG𝑟 |

∑
(𝑣𝑖 ,𝑣𝑗 ,𝑣𝑘 ) ∈ΔG𝑟

1
2DG𝑟 (𝑣𝑖 , 𝑣𝑚)

(
DG𝑟 (𝑣𝑖 , 𝑣𝑚)

2

+(DG𝑟 (𝑣 𝑗 , 𝑣𝑘 )
2)/4 − (DG𝑟 (𝑣𝑖 , 𝑣 𝑗 )

2 + DG𝑟 (𝑣𝑖 , 𝑣𝑘 )
2)/2

) (19)

where ΔG𝑟 refers to a sample set of triangles from G𝑟 . DG𝑟 is the
shortest path distance for given node pair in G𝑟 . Given a triangle
(𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑘 ) ∈ ΔG𝑟 , we find the midpoint 𝑣𝑚 of the shortest path
connecting 𝑣 𝑗 to 𝑣𝑘 to estimate how it structurally fits into the global
topology. 𝜉G𝑟 is zero for triangles in lines, positive for triangles in
circles, and negative for triangles in trees. Intuitively negative 𝜉G𝑟
suggests that 𝑟 exhibits a strong transitivity.

C COMPLEX QUERY STRUCTURES
We follow [24] to examine FOL queries across 14 types of query
structures. Figure 7 illustrates the 14 query structures considered in
our experiments in computation graphs. To study the reasoning abil-
ity for diverse query types, we divide all query structures into three
categories: (i) relation-heavy: queries that are purely tied to relation
projections (1p/2p/3p), (ii) logic-heavy: queries that are heavily tied
to logical operations (2i/3i/ip/pi/2u/up), and (iii) negation-related:
queries that involve negation operator (2in/3in/inp/pin/pni). For
example, “ip” indicates the following reasoning step: two relational
projections for two anchor entities, followed by an intersection and
another relational projection from the above intermediate results
to arrive at the target answer (green node).

Table 4: Hierarchical Knowledge Graph: WN18RR

Relation 𝐾ℎ𝑠G𝑟 𝜉G𝑟 Hierarchical
𝑚𝑒𝑚𝑏𝑒𝑟𝑀𝑒𝑟𝑜𝑛𝑦𝑚 1.00 -2.90 !

ℎ𝑦𝑝𝑒𝑟𝑛𝑦𝑚 1.00 -2.46 !

ℎ𝑎𝑠𝑃𝑎𝑟𝑡 1.00 -0.82 !

instance hypernym 1.00 -0.78 !

𝑚𝑒𝑚𝑏𝑒𝑟𝑂𝑓 𝐷𝑜𝑚𝑎𝑖𝑛𝑅𝑒𝑔𝑖𝑜𝑛 1.00 -0.78 !

𝑚𝑒𝑚𝑏𝑒𝑟𝑂𝑓 𝐷𝑜𝑚𝑎𝑖𝑛𝑈𝑠𝑎𝑔𝑒 1.00 -0.74 !

𝑠𝑦𝑛𝑠𝑒𝑡𝐷𝑜𝑚𝑎𝑖𝑛𝑇𝑜𝑝𝑖𝑐𝑂𝑓 0.99 -0.69 !
𝑎𝑙𝑠𝑜𝑆𝑒𝑒 0.36 -2.09 ✗

𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑙𝑦𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝐹𝑜𝑟𝑚 0.07 -3.84 ✗

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑇𝑜 0.07 -1.00 ✗

𝑣𝑒𝑟𝑏𝐺𝑟𝑜𝑢𝑝 0.07 -0.50 ✗

Algorithm 1: Logical Query and Answer Pair Generation
Input: G = (V, R) , K , 14 query types 𝑆 ;

Output: queries TQ , answers TA ;

Function GoundQueries(𝐺𝑠 , G, K):
𝑣← uniformly sample (w/o replacement) an entity 𝑣 ∈ V
TQ,𝑠 ← assign entity 𝑣 for the target root node 𝒓𝒔 ∈ 𝑉𝑠
foreach node 𝒗𝒔 ∈ 𝑉𝑠 \ {𝒓𝒔 } in pre-order traversal ordering do

𝑣← the entity assigned for the parent of node 𝒗𝒔
K𝑣 ← set of triples with the object as 𝑣 via any relation
𝑟 (𝑣′, 𝑣) ← uniformly sample a triple from K𝑣

TQ,𝑠 ← assign entity 𝑣′ for the node 𝒗𝒔
TQ,𝑠 ← assign relation 𝑟 for the edge from 𝒗𝒔 to its parent

return TQ,𝑠
End Function
foreach query structure s ∈ 𝑆 do

/* step 1: generate queries */
𝐺𝑠 = (𝑉𝑠 , 𝐸𝑠 ) ← induce a DAG according to the query structure 𝑠
TQ ← TQ ∪ GoundQueries(𝐺𝑠 , G, K)
/* step 2: generate answers */
TA,𝑠 ← collect target entities as the final answers for TQ,𝑠
TA ← TA ∪ TA,𝑠

return TQ , TA

D WN18RR-QA BENCHMARK
To study the reasoning sensitivity for hierarchical logical queries,
we consider to generate QA pairs1 for WN18RR, which richly con-
tains hierarchical relations. In Table 4, seven out of 11 relations on
WN18RR are viewed as hierarchical relations due to their high anti-
symmetry (𝐾ℎ𝑠G𝑟 ) and negative transitive scores (𝜉G𝑟 ).

Grounding Query Structures. To generate queries for training,
we follow prior work [23, 24] to generate ten types of query struc-
tures, including 1p, 2p, 3p, 2i, 3i, 2in, 3in, inp, pin and pni. For
evaluation, we consider all 14 query structures that are both seen
and unseen during the training process. Given a KG and a query
structure 𝑠 seen as a directed acyclic graph (DAG), we adopt pre-
order traversal to assign entities and relation types for each node
and edge in the DAG to construct the query 𝑞 with type 𝑠 . That
is, starting from the target root node to the anchor leaf nodes for
the given DAG, we uniformly sample an entity 𝑣 ∈ V in the KG

1https://github.com/nelsonhuangzijian/WN18RR-QA
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Figure 7: Illustration of the query structures for 14 query types with relation-specific projections (p), intersection (i), union
(u) and negation (n) operations. Different relations are depicted in different colors (red/blue/green arrows).

Table 5: Examples of constructed queries and their answer sets.

Logical Query Answer
“2p” 𝑞 = 𝑉? . ∃𝑉1 : ℎ𝑎𝑠𝑃𝑎𝑟𝑡 (𝐸𝑛𝑔𝑙𝑎𝑛𝑑,𝑉1) ∧ ℎ𝑎𝑠𝑃𝑎𝑟𝑡 (𝑉1,𝑉?) Tower of London
“ip” 𝑞 = 𝑉? . ∃𝑉1 : (𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑙𝑦𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝐹𝑜𝑟𝑚 (𝑉1, 𝐵𝑟𝑖𝑡𝑎𝑛𝑛𝑖𝑐) ∧ ℎ𝑎𝑠𝑃𝑎𝑟𝑡 (𝑉1, 𝐸𝑛𝑔𝑙𝑎𝑛𝑑)) ∧𝑚𝑒𝑚𝑏𝑒𝑟𝑂𝑓 𝐷𝑜𝑚𝑎𝑖𝑛𝑅𝑒𝑔𝑖𝑜𝑛 (𝑉1,𝑉?) Panda Car
“inp” 𝑞 = 𝑉? . ∃𝑉1 : (ℎ𝑎𝑠𝑃𝑎𝑟𝑡 (𝑉1, 𝑁𝑜𝑟𝑡ℎ𝑒𝑟𝑛𝐼𝑟𝑒𝑙𝑎𝑛𝑑) ∧ ¬ℎ𝑎𝑠𝑃𝑎𝑟𝑡 (𝑉1, 𝐸𝑛𝑔𝑙𝑎𝑛𝑑)) ∧𝑚𝑒𝑚𝑏𝑒𝑟𝑂𝑓 𝐷𝑜𝑚𝑎𝑖𝑛𝑅𝑒𝑔𝑖𝑜𝑛 (𝑉1,𝑉?) Gaelic (Irish)

Table 6: Number of training, validation, and testing queries generated for different query structures.

KG Query 1p 2p 3p 2i 3i ip pi 2u up 2in 3in inp pin pni

FB15k-237
Training 149,689 149,689 149,689 149,689 149,689 - - - - 14,968 14,968 14,968 14,968 14,968
Validation 20,101 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000
Testing 22,812 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000

NELL995
Training 107,982 107,982 107,982 107,982 107,982 - - - - 10,798 10,798 10,798 10,798 10,798
Validation 16,927 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000
Testing 17,034 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000

WN18RR
Training 103,509 103,509 103,509 103,509 103,509 - - - - 10,350 10,350 10,350 10,350 10,350
Validation 5,202 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
Testing 5,356 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

Table 7: Ablation study on WN18RR for formulations of union operator in MRR (%).

Model 1p 2p 3p 2i 3i ip pi 2u up 2in 3in inp pin pni avg𝑝 avg𝑙 avg𝑛DNF U DNF U
LinE𝛼,𝛽 45.12 12.35 6.70 47.11 67.13 14.73 24.87 8.49 7.00 6.93 5.99 12.50 60.81 7.34 5.20 7.74 21.39 28.21 18.72

as the target node. For each child node linked to the target node
in the DAG, we uniformly sample a triplet 𝑟 (𝑣 ′, 𝑣) with object en-
tity 𝑣 via relation 𝑟 in the KG. We then assign the relation 𝑟 to
the edge and entity 𝑣 ′ to the child node. Iteratively, we continue
the next assignment of edges and nodes via pre-order traversal
until each edge and node in the DAG are grounded with specific
relation and entity in the KG. As a result, the leaf nodes in the
DAG are viewed as the anchor nodes and the target root node is
collected as the ground-truth answer to the query 𝑞. We follow this
procedure to generate the set of QA pairs, TQ = {𝑞1, 𝑞2, · · · , 𝑞𝑛}
and TA = {𝑞1 [𝑉?], 𝑞2 [𝑉?], · · · , 𝑞𝑛 [𝑉?]}, for training, validation and
testing on WN18RR. The overall procedure of logical query and an-
swer pair generation is summarized in Algorithm 1. Examples of QA
pairs for three query categories are illustrated in Table 5.

Evaluation Protocol. For fair performance comparison, we fol-
low the split setup for the generated queries. Namely, the distri-
bution of the number of queries for each query structure remains
approximately identical to FB15k-237 and NELL995 in BetaE [24].
Specifically, we generate all “1p” queries (10,350), which is exactly

the number of triplets |K | in the original WN18RR (Table 1). The
entire set of “1p” queries are used for training. For each query
type of (2p/3p/2i/3i), we generate the same amount of queries as
“1p” query (i.e., 103,509) as training set. For each query type of
(2in/3in/inp/pin/pni), we generate at one tenth the “1p” query (i.e.,
10,350) as training set. For validation and testing queries, we gener-
ate approximately one fifth the “1p” query in validation and testing
query sets (∼5K) for each query type (i.e., 1K). For example, given
5,202 and 5,356 of “1p” query in validation and testing sets from
WN18RR, respectively, we generate 1,000 queries for other 13 query
types for validation and testing. Table 6 reports the detail distribu-
tions of query types for FB15k-237, NELL995, andWN18RR.

E ADDITIONAL EXPERIMENTS
In Table 7, we observe that LinE𝛼,𝛽 with DNF outperforms U on
union queries (2u/up). As a result, the DNF is still the most ef-
fective formulation for union operators. Note that although U is
slightly less effective than DNF for union queries, DNF takes ex-
tra computation to alter the logical query structures. Overall, our
straightforward formulation is fairly competitive to DNF.


	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Logical Query Reasoning
	2.2 Probabilistic Representation Space
	2.3 Problem Statement

	3 LinE Embeddings
	3.1 Reasoning Pipeline Overview
	3.2 Logic Space Transformation
	3.3 Logical Query Inference
	3.4 Logical Query Reasoning

	4 Experiments
	4.1 Datasets
	4.2 Experimental Settings
	4.3 Query Reasoning Complexity (RQ1)
	4.4 Hierarchical Logical Query (RQ2)
	4.5 Logic Space Transformation (RQ3)
	4.6 Relation and Logical Operators (RQ4)

	5 Related Work
	6 Conclusions
	References
	A Beta Distribution
	B Hierarchy Estimate
	C Complex Query Structures
	D WN18RR-QA Benchmark
	E Additional Experiments

